Superconductivity: fundamentals and applications

Prof. Dr Angelo Di Bernardo

Course logistics

• Total credits: 10
• Winter semester 2020/2021
• 4 hours of lectures/week (Mon 15:15-16:45, Thur 15:15-16:45)
• plus 2 hours of exercises/week (time to be defined with students)
• Final exam: oral examination (45 min)
• For more info please email angelo.dibernardo@uni-konstanz.de

Aim of the course

• To review the basics of superconductivity and its main technological applications
Superconductivity: fundamentals and applications

Prof. Dr Angelo Di Bernardo

Course outline

• Basic properties
 Superconducting transition, thermodynamics, electrodynamics, Meissner effect
 type-I and type-II superconductors

• Theoretical descriptions and models
 Microscopic Bardeen-Cooper-Schrieffer theory, phenomenological Ginzburg-Landau
 theory, electron tunnelling in superconductors, unconventional superconductivity

• Josephson effect
 Basic phenomena and devices based on it

• Applications of superconductivity (with latest research findings)
 Ultrasensitive magnetometers, particle detectors, magnetic levitation trains,
 RF and microwave filters, low-dissipation digital circuits and quantum computing
Superconductivity: fundamentals and applications

Prof. Dr Angelo Di Bernardo
https://www.dibernardo.uni-konstanz.de/

Sources
https://www.jrailpass.com/blog/maglev-bullet-train
https://physics.aps.org/articles/v2/24
https://arxiv.org/abs/1903.03435v1
https://www.zurich.ibm.com/st/quantum/