SFB 1432

Colloquium

Thu Apr, 27 Talk at 15:15 in P 603

Dr. Sebastián A. Díaz

Universität Konstanz

Periodic drive and topology link textures and magnons

The magnetization field in solids can develop static structures with nontrivial topology that when coupled to a time-periodic drive support novel magnonic excitations. I will present our theoretical investigation of two platforms where topological magnetic textures and magnons can be controlled. In the first platform, a skyrmion-antiskyrmion bilayer forms a topological charge dipole when excited by inplane AC magnetic fields and acts as an efficient spin-wave antenna [1]. In the second platform, high-frequency laser irradiation on multiferroic insulators induces off-resonance skyrmion motion and a Floquet magnonic topological transition in a laser-driven skyrmion crystal [2]. Finally, I will dicuss our recent proposal to exploit AC electric fields in frustrated magnets to construct a magnetic soliton with nontrivial topology in spacetime. Our findings envisage the periodic driving of topological magnetic textures as a promising method to engineer spin waves for magnonics and to construct topological magnetic solitons in spacetime.

Contact: W. Belzig 4782

[1] S.A. Diaz, T. Hirosawa, D. Loss and C. Psaroudaki, Nano Lett. 20, 6556 (2020)
[2] T. Hirosawa, J. Klinovaja, D. Loss and S.A. Diaz, Phys. Rev. Lett. 128, 037201 (2022)

Universität Konstanz

sfb1432.uni.kn